# David Savenok

 $630-824-8115 \mid \underline{david.savenok} \\ \underline{@outlook.com} \mid linkedin.com/in/david-savenok \mid github.com/david-savenok \mid github.com/david$ 

## **EDUCATION**

# University of Illinois at Urbana-Champaign

Expected May 2026

Bachelor of Science, Mathematics and Computer Science

GPA 3.98/4.0

Champaign, IL

Relevant Coursework: Data Structures, Algorithms, Computer Systems, Computer Networking, Deep Learning

#### EXPERIENCE

### Software Engineering Intern

 $May\ 2025-Present$ 

Ever fox

• Stateless RPM Overlay Package Manager

- \* Designed and shipped a stateless overlay package manager for read-only RHEL Linux dev images, bind-mounting unpacked RPM content into a writable stateless partition to enable install/update/remove across 4 internal OS products.
- \* Cut developer package refresh from >60-minutes for full VM reimages to <1 minute per RPM install (95%+ reduction); supported bulk installs and safe updates via state manifests and atomic rollback.
- \* Hardened overlays with SHA-256 integrity checks, SELinux/MAC relabeling, and DAC/permission preservation; built a test suite to validate contexts, placements, and system file constraints (>60k files validated/test).

#### • FIPS-Compliant Lightweight Web Server

- \* Surveyed 10+ open-source servers against GRC and FIPS requirements, constrained-device footprint, and community supply-chain risk, ruling out heavyweight stacks and single-maintainer projects.
- \* Configured and packet-traced HTTP/3 and TLS 1.3 stacks (tcpdump, traceroute, netstat) to verify real-world behavior; narrowed recommendations to Nginx, Jetty, and OpenLiteSpeed with hardened baselines.
- \* Presented findings to the Architecture Review Board in a 30-minute briefing; became team SME on HTTP/3, TLS 1.3, PKI, mTLS, OAuth/JWT, and quantum-resistant/FIPS-approved SSL implementations.

## • Linux USB Device Security Hardening

- \* Performed in-depth analysis of Linux USB enumeration, driver binding, interface classes, and common attack vectors (BadUSB, rogue HID, keystroke injection), mapping risk across udev, USBGuard, and device-authorization paths.
- \* Developed advanced real-time auditing and correlation tooling that aggregates udev + USBGuard telemetry, producing concise security summaries and actionable logs for system developers.
- \* Automated strict USB allowlisting by programmatically updating USBGuard rules through D-Bus IPC, enabling authenticated device onboarding without manual daemon configuration edits.

## PROJECTS

#### **6-Axis Robotic Arm** | github.com/david-savenok/EOH-Robot

November 2024 - April 2025

- Led a 5-member team building control systems for a 6-DOF robotic arm inspired by the Modern Robotics UR3 for presentation at the University of Illinois's Engineering Open House (EOH) event.
- Developed Arduino Mega control framework for stepper/encoder integration and closed-loop actuation; implemented serial streaming between Python motion planning and Arduino firmware.
- Coordinated with mechanical and electrical engineering teams to integrate hardware and software components.

#### Amazon Web Scraper | github.com/david-savenok/amazon-scraper

June 2023

- Built a high-throughput Amazon scraper in Python (asyncio, aiohttp, BeautifulSoup) to extract product and price data via concurrent requests.
- Implemented caching/session management and CSV export; modular design supports background or cron execution.

## $\textbf{Google PageRank Implementation} \mid \textit{github.com/david-savenok/pagerank}$

March 2023

- Implemented PageRank in Python using sampling and power-iteration convergence on crawled graphs.
- Wrote an HTML crawler and random-surfer transition model with damping factor to simulate realistic navigation.

## ${\bf Social\ Media\ Site}\mid github.com/david\text{-}savenok/network$

December 2022

- Designed a full-stack web application using Python's Django framework with Bootstrap and a SQLite database.
- Integrated account/security management, posting, liking, commenting, and other interactive features.
- Applied a Model-View-Controller architecture, ensuring maintainability and future scalability.

## TECHNICAL SKILLS

Languages: C/C++, Python, Bash, SQL, x86 Assembly

Security & Systems: RHEL/Linux, SELinux (MAC), RPM, USBGuard/udev, D-Bus, PKI/TLS, FIPS

Tools: Git, Docker, GDB, tcpdump, traceroute, netstat